Essential Things You Must Know on Azure

Practical AI Roadmap Workbook for Business Executives


Image

A simple, practical workbook showing the real areas where AI adds value — and where it doesn’t.
The Dev Guys — Built with clarity, speed, and purpose.

Purpose of This Workbook


Modern business leaders face pressure to adopt AI strategies. Everyone seems to be experimenting with, buying, or promoting something AI-related. But many non-technical leaders are caught between extremes:
• Saying “yes” to every vendor or internal idea, hoping some of it will succeed.
• Saying “no” to everything because it feels risky or confusing.

It provides a third, smarter path — a clear, grounded way to find genuine AI opportunities.

You don’t have to be technical; you just need to know your operations well. AI is simply a tool built on top of those foundations.

How to Use This Workbook


Either fill it solo or discuss it collaboratively. The aim isn’t to finish quickly but to think clearly. By the end, you’ll have:
• A short list of meaningful AI opportunities tied to profit or efficiency.
• Understanding of where AI should not be used.
• A structured sequence of projects instead of random pilots.

Think of it as a guide, not a form. A good roadmap fits on one slide and makes sense to your CFO.

AI strategy equals good business logic, simply expressed.

Step 1 — Business First


Begin with Results, Not Technology


Most AI discussions begin with tools and tech questions like “Can we use ChatGPT here?” — that’s backward. Instead, begin with clear results that matter to your company.

Ask:
• What top objectives are driving your business now?
• Where are teams overworked or error-prone?
• Where do poor data or slow insights hold back progress?

It should improve something tangible — speed, accuracy, or cost. If an idea doesn’t tie to these, it’s not a roadmap — it’s just an experiment.

Skipping this step leads to wasted tools; doing it right builds power.

Step Two — Map the Workflows


Visualise the Process, Not the Platform


You must see the true flow of tasks, not the idealised version. Pose one question: “What happens between X starting and Y completing?”.

Examples include:
• New lead arrives ? assigned ? nurtured ? quoted ? revised ? finalised.
• Support ticket ? triaged ? answered ? escalated ? resolved.
• Invoice generated ? sent AWS ? reminded ? paid.

Each step has three parts: inputs, actions, outputs. AI adds value where inputs are messy, actions are repetitive, and outputs are predictable.

Rank and Select AI Use Cases


Assess Opportunities with a Clear Framework


Evaluate AI ideas using a simple impact vs effort grid.

Use a mental 2x2 chart — impact vs effort.
• Focus first on small, high-impact changes.
• Big strategic initiatives take time but deliver scale.
• Nice-to-Haves — low impact, low effort.
• Delay ideas that drain resources without impact.

Consider risk: some actions are reversible, others are not.

Small wins set the foundation for larger bets.

Laying Strong Foundations


Data Quality Before AI Quality


Messy data ruins good AI; fix the base first. Clarity first, automation later.

Design Human-in-the-Loop by Default


AI should draft, suggest, or monitor — not act blindly. Build confidence before full automation.

Common Traps


Steer Clear of Predictable Failures


01. The Demo Illusion — excitement without strategy.
02. The Pilot Graveyard — endless pilots that never scale.
03. The Full Automation Fantasy — imagining instant department replacement.

Define ownership, success, and rollout paths early.

Partnering with Vendors and Developers


Your role is to define the problem clearly, not design the model. State outcomes clearly — e.g., “reduce response time 40%”. Share messy data and edge cases so tech partners understand reality. Clarify success early and plan stepwise rollouts.

Transparency about failures reveals true expertise.

Signs of a Strong AI Roadmap


How to Know Your AI Strategy Works


It’s simple, measurable, and owned.
Buzzword-free alignment is visible.
Ownership and clarity drive results.

Essential Pre-Launch AI Questions


Before any project, confirm:
• What measurable result does it support?
• Is the process clearly documented in steps?
• Do we have data and process clarity?
• Where will humans remain in control?
• How will success be measured in 90 days?
• What’s the fallback insight?

The Calm Side of AI


Good AI brings order, not confusion. It’s not a list of tools — it’s an execution strategy. True AI integration supports your business invisibly.

Leave a Reply

Your email address will not be published. Required fields are marked *